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Abstract

Over the last decade, biomarker research has identified potential biomarkers for the diagnosis, prognosis, and management

of traumatic brain injury (TBI). Several cerebrospinal fluid (CSF) and serum biomarkers have shown promise in predicting

long-term outcome after severe TBI. Despite this increased focus on identifying biomarkers for outcome prognostication

after a severe TBI, several challenges still exist in effectively modeling the significant heterogeneity observed in TBI-

related pathology, as well as the biomarker-outcome relationships. Biomarker data collected over time are usually

summarized into single-point estimates (e.g., average or peak biomarker levels), which are, in turn, used to examine the

relationships between biomarker levels and outcomes. Further, many biomarker studies to date have focused on the

prediction power of biomarkers without controlling for potential clinical and demographic confounders that have been

previously shown to affect long-term outcome. In this article, we demonstrate the application of a practical approach to

delineate and describe distinct subpopulations having similar longitudinal biomarker profiles and to model the relation-

ships between these biomarker profiles and outcomes while taking into account potential confounding factors. As an

example, we demonstrate a group-based modeling technique to identify temporal S100 calcium-binding protein B (S100b)

profiles, measured from CSF over the first week post-injury, in a sample of adult subjects with TBI, and we use

multivariate logistic regression to show that the prediction power of S100b biomarker profiles can be superior to the

prediction power of single-point estimates.
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Introduction

Biomarker research has the capacity to unlock important

clues about the molecular biology of injury, disease, plasticity,

and recovery. In traumatic brain injury (TBI), there is a tremendous

unmet need to deal effectively with the significant heterogeneity of

TBI-related pathology and personalize treatments in a manner that

optimizes recovery. Yet, despite many patients having similar in-

jury factors and clinical care after their TBI, recovery and outcomes

can be very different. One possible rationale is that individual dif-

ferences in outcome may be the result of unique and changing pro-

files in an injury-induced proteome. To date, the TBI biomarker

literature primarily has focused on biomarker levels in the first few

days after injury; however, biomarkers may also be informative

about pathology associated with ongoing neurodegenerative pro-

cesses as well as the restorative processes that influence recovery.

Also, pathophysiological profiles observed early after injury may

affect late-TBI pathology and risk for complications in the postacute

or -chronic phases after injury.1,2 Thus, there is a strong clinical

rationale for assessing longitudinal biomarker profiles in TBI.

Over the last decade, a significant focus has centered on iden-

tifying and utilizing novel biomarkers for the diagnosis, prognosis,

and management of TBI. A search of ‘‘TBI and biomarker’’ on

March 23, 2012 resulted in 9960 and 545 hits in Google Scholar and

PubMed, respectively. Several cerebrospinal fluid (CSF) and serum

biomarkers have shown promise in predicting long-term outcome

after severe TBI.3–13 One particular marker of interest in TBI is

S100 calcium-binding protein B (S100b), a protein expressed in

mature astrocytes whose foot processes contribute to the blood–

brain barrier (BBB). S100b easily extravasates into the serum as a

result of BBB compromise, making it a potentially logical choice as

a candidate biomarker for TBI diagnosis and prognosis.14–17

Despite this increased focus on identifying biomarkers for

prognosis estimation after a severe TBI, several challenges still
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exist in effectively modeling biomarker-outcome relationships.

Traditionally, biomarker data collected over time are summarized

into single-point estimates. These point estimates are then used to

examine the relationship between biomarker levels and outcome of

interest. Some studies have used average biomarker levels to pre-

dict TBI outcome.4,6,7,11 Others have used peak levels,8,18 levels

obtained during the first day after injury,5,19,20 whereas others have

used arbitrary cutoffs.5,9–11,20

Recent research from our group has assessed temporal bio-

marker profiles in evaluating TBI prognosis.12,13,21,22 Based on this

recent work, we hypothesized that temporal biomarker profiles can

be more informative than single-point estimates in predicting out-

come. Work has also identified demographic, premorbid, and

psychosocial factors associated with functional impairments, dis-

ability, and community integration for those with TBI. However, it

is unknown whether these factors are linked to temporal biomarker

profiles.23 Additionally, injury severity, as measured by the Glas-

gow Coma Scale (GCS) and the Injury Severity Score, are sensi-

tive predictors of outcome in multiple populations with TBI.24

However, many biomarker studies to date have focused on the

prediction power of the biomarkers without controlling for poten-

tial clinical and demographic confounders, such as injury sever-

ity and age.5,6,8,18 Hence, more work is needed to determine the

unique diagnostic and prognostic utility of biomarkers in TBI when

effects of standard clinical and demographic variables are taken

into account.

A systematic and practical approach in biomarker research is

needed to evaluate temporal trends, determine factors affecting

these trends, and assess outcome differences associated with these

temporal biomarker patterns. Our immediate aim for this study was

to demonstrate the application of a contemporary modeling ap-

proach to delineate distinct subpopulations with TBI having unique

temporal biomarker profiles and model the relationships between

biomarker profiles and outcomes while taking into account ap-

propriate covariates. Our long-term aim is to establish effective

biomarker modeling algorithms for diagnosis, prognosis, and

management of patients with TBI. Previously, we have applied

group-based trajectory modeling to discern unique biomarker

trends after TBI.12,13 The specific aims of this article are to dem-

onstrate a step-by-step process for this approach by (1) summa-

rizing approaches for describing temporal trends of biomarker

levels across time in persons with TBI and (2) comparing prediction

potential of biomarker profiles to methodologies that use a single

measure in predicting outcome after TBI. To provide a practical

example of this novel approach in biomarker research, we use

S100b data that were measured from CSF samples collected from

adult subjects with severe TBI over the first 6 days after their injury.

Methods

Population description

This study was approved by the University of Pittsburgh’s In-
stitutional Review Board (Pittsburgh, PA). Our population included
138 adults with severe (GCS £ 8), closed-head TBI for whom CSF
was collected as a part of their intensive care unit management.
People with penetrating trauma as the source of their injury were
not included for analysis. Sample collection procedures and S100b
measurements used in this analysis are described elsewhere.25

Beginning within 12 hours of injury, CSF samples were collected
up to twice-daily for 6 days by an external ventricular drain with
a run-off bag placed for clinical care. Upon collection of each
bag, CSF samples were centrifuged, aliquoted, and then stored
at - 80�C until batch analysis.

A total of 501 samples were collected from these subjects en-
rolled at our level 1 trauma center. Subjects were included in sta-
tistical analysis if they had data on at least 2 days within the 6-day
sampling period. Sample collection, processing methods, and bio-
marker assessment are provided in our companion article.25

Group-based trajectory modeling

Identification of distinct subpopulations that have unique bio-
marker profiles over time can be accomplished using a contem-
porary statistical technique called group-based trajectory modeling
(GBTM). GBTM is a statistical approach designed to identify
clusters of individuals following a similar progression of some
behavior (in this case, biomarker trajectories) over time.26 The
methodology assumes that the population is composed of a finite
number of distinct groups that can be defined by their biomarker
profiles or trajectories.26 In this section, we present a brief dis-
cussion about the process involved in trajectory model develop-
ment, as it applies to biomarker profiles. A complete theoretical
discussion of these concepts is presented elsewhere.27 Ad-
ditionally, an online source (http://www.andrew.cmu.edu/user/
bjones/) provides the SAS code and examples for reference.

Data distribution

PROC TRAJ28 is a SAS procedure that fits GBTM. It provides
the ability to model three different data distributions for the vari-
able of interest: (1) counts; (2) continuous data; and (3) dichoto-
mous data. Thus, when using PROC TRAJ, one must first decide
the appropriate data distribution before fitting a trajectory model.
PROC TRAJ allows for zero-inflated Poisson (ZIP), censored
normal (CNORM), and Bernoulli distributions. The ZIP model is
used for count data, CNORM distribution is used for continuous
data, and Bernoulli distribution is appropriate for dichotomous
data. A distribution that allows for censoring is particularly useful
when working with biomarker data sets, because the data can
cluster at the minimum of the (biomarker) measurement scale or at
the measurement scale maximum or both.29 If there is no clustering,
a normal distribution model can be specified by identifying a
minimum and maximum that is outside the range of the observed
biomarker values.

In our example, S100b concentration is a continuous variable,
with a minimum detection level resulting from assay detection
limits. Because of this characteristic of the data, subjects have data
that tend to cluster at the minimum value, which can lead to a
skewed distribution. As such, we chose to use CNORM distribu-
tion. As with many biomarkers measured in subjects after TBI,
S100b levels from the same individual can widely vary across time,
and levels from different subjects can substantially vary. As a re-
sult, especially when the sample size is not large, distribution
is usually not normal. To address these issues associated with
data distribution, we applied the natural log transformation to our
data set.

Trajectory model building

Group-based modeling assumes that the population is composed
of finite distinct groups. One of the key decisions when identifying
trajectory groups in a population is determining the number of
groups that best fit the data. One must also decide on the highest
polynomial order that best characterizes the path that biomarkers
for each trajectory group takes over time. Polynomial order relates
to the shape of the trajectory. The first-order or linear polynomial
suggests a linearly decreasing or increasing trajectory. The qua-
dratic polynomial, or second order, suggests a trajectory that has
one turning (i.e., inflection) point. For example, levels can initially
increase and decrease after a peak is reached. The cubic polyno-
mial, or third-order polynomial, suggests a trajectory where there
are two turning points (inflections), a maximum and minimum
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concentration, for example. Clinical expertise regarding TBI
pathophysiology and the expected progressive path for biomarkers
to take over time can be an important component when determining
polynomial order.

Different models with a varying number of groups and shapes
have to be compared to find the model that best fits the biomarker
data. Several model-fit indices exist to help determine the best
model, but one commonly used index is the Bayesian information
criterion (BIC). In general, BIC measures improvement in model fit
gained by adding more parameters (e.g., more groups and more-
complex trajectory shapes), but also emphasizes model simplicity
by applying a penalty for complex models. When comparing two
possible trajectory models (e.g., with different number of groups
and/or trajectory shapes [order of polynomials]), the model with the
highest BIC value would be chosen. Thus, if two models fit the data
similarly, but one is more complex (i.e., has more groups or higher
polynomial order) than the other, the simpler model should be
chosen. A thorough discussion of BIC can be found elsewhere.30

Because BIC is likely to change as the number of groups or the
shape of the trajectories is changed, a decision has to be made about
what constitutes a meaningful change in BIC value when com-
paring two models with a different number of groups or trajectory
shapes or both. One proposed measure for assessing meaningful
change27 is the Bayes factor. For two models (1 and 2), a Bayes
factor is the ratio of the probability of model 1 being the correct
model to the probability of model 2 being the correct model.27

Thus, if two models have equal probability of being correct, the
Bayes factor would be 1. Values less than 1 favor model 2, whereas
values greater than 1 imply that model 1 has a higher probability of
being the correct model. The Bayes factor between two different
models is estimated by exp(BIC1-BIC2), where BIC1 and BIC2 rep-
resent the BIC values for models 1 and 2 respectively. When
comparing two models, a 10-fold difference in Bayes factor is
considered a meaningful difference.27

For our example, we started with a model that had the highest
polynomial order (quartic) included. As described below, these
polynomial terms are often reduced when refining the model. We
should point out that, currently, PROC TRAJ does not allow a
polynomial order greater than four (quartic). Thus, we typically begin
with a model consisting of one group with a quartic degree polyno-
mial, and then we increase the group numbers until the number of
groups that best fit the data is identified using a combination of BIC
and Bayes factors. Once the number of groups is identified, we then
reduce the polynomial orders until the highest order polynomial for
each group is significant at the confidence level alpha (a) = 0.05.

Evaluating trajectory model fit

Group-based modeling assigns each subject a posterior proba-
bility, which measures an individual’s probability of belonging to a
particular group given his or her measured biomarker levels across
time.27 Each individual is then assigned to the group where the
posterior probability of membership is highest (i.e., maximum
probability rule). In addition to assigning individuals into distinct
groups, the posterior membership probabilities are the basis for
judging the adequacy of the model. A brief discussion of model
diagnostics is presented in this section. A detailed presentation can
be found elsewhere.27

1. Average group posterior probability (AvePP): AvePPj is the

average posterior probability for group j. If individuals are

assigned to distinct groups with no ambiguity, the AvePPj

would be 1 for each group. Thus, the closer the AvePPj are

to 1, the better the model fit. An AvePP greater than 0.7 for

all groups is generally recommended. In our published work,

we have observed AvePP much greater than 0.7, suggesting

that subjects with TBI can be very accurately placed into a

trajectory group.12,13

2. Odds of correct classification (OCC): for a trajectory group j,

OCCj, is given by OCCj¼
AvePPj

1�AvePPj
pj

1� pj
, where AvePPj is the av-

erage group posterior probability and pj represents the

population size of trajectory group j. pj represents the

probability that a randomly selected individual belongs to

group j. In the above equation, the numerator represents the

OCC based on the maximum probability rule, and the de-

nominator represents the OCC based on a random assign-

ment. So, if the maximum probability rule is not better than

random guessing, the OCC would equal 1 for a given tra-

jectory group. For a model that fits the data well, the nu-

merator should be much bigger than the denominator;

leading to an OCC value much greater than 1. Generally, an

OCC of 5 or more is recommended for all groups.

3. The difference between estimated group probabilities pj and

the proportion Pj assigned to the group using the maximum

probability rule, pj, is the population size of trajectory group j

estimated by the model, and Pj is the actual proportion of

individuals that are assigned to group j. When a model fits the

data well, these two quantities are similar.

Dealing with missing data

Missing data is often a problem in longitudinal studies. PROC
TRAJ uses the maximum likelihood method to estimate parame-
ters, including group sizes and shapes of trajectories. Subjects with
missing data are included in the analysis, but only available data for
each subject are used. These parameter estimates can be biased if
missing data are not random. Thus, missing data patterns should be
explored and their effects on biomarker profiles and outcomes
investigated.

Assessing the effect of trajectory groups
on global outcome

After the best trajectory model was identified for our example
with S100b, based on the steps discussed above, we evaluated the
predictive power of trajectory groups compared to average weekly
S100b level. Below, we show that, after controlling for demographic
and clinical variables, trajectory groups are superior to average levels
in predicting outcome. Trajectory groups were also compared to
common demographic and clinical variables, including gender, age,
injury severity, mechanism of injury, and initial computed tomog-
raphy findings. Outcomes were measured using the Glasgow Out-
come Score (GOS), collected 6 months after injury, and acute care
mortality. The GOS is a frequently used outcome measure developed
by Jennett and Bond (1975).31 It consists of five categories: good
recovery (category 5); moderate disability (category 4); severe dis-
ability (category 3); persistent vegetative state (category 2); or death
(category 1). For this article, we collapsed GOS scores into three
categories (category 1 versus categories 2 and 3 versus 4 and 5) and
used multivariate ordinal logistic regression to examine whether
trajectory groups further discriminate outcome, after controlling for
other covariate factors. A logistic regression model to predict out-
come was built using trajectory groups and clinical and demographic
variables, and a separate, comparative model was built by replacing
trajectory groups with the average of the first week’s S100b levels.

Results

This study included 138 subjects who had suffered a severe TBI.

The majority of these subjects (71.5%) had suffered their injuries

from automobile or motorcycle accidents, and 22 (16.1%) were

injured as a result of fall or jump. The median GCS score for all

subjects was 6. The age range for this sample was 16–74 years
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(average, 35.6 – 1.3). Twenty-eight subjects (20.3%) were female.

Less than one fifth (17.4%) of the total sample died during acute

care, and 40 subjects (33.9%) had moderate disability or good re-

covery 6 months after their injuries.

Our data set included subjects who did not have biomarker data

on all 6 days. More than 75% of our subjects had biomarker data on

4 days or less, and 23.2% had data on only 2 days. Only 10 (7.3%)

subjects had all 6 days of data (Table 1). However, missing data in

clinical data sets are commonly found, particularly with critically

ill populations who may be receiving emergent surgeries and pro-

cedures. Additionally, samples were obtained by passive drainage;

thus, some missing samples could be the result of variation in the

amount of CSF passive draining from patients over the course of their

intracranial pressure (ICP) monitoring window. We investigated

patterns of missing data to determine whether ‘‘missingness’’ affected

biomarker profiles and/or outcomes. Three dummy variables were

created for this purpose: (1) whether subjects had missing data early

(first 2 days after injury); (2) whether they had missing data late (days

4 and 5 after their injuries); and (3) whether subjects had fewer than 4

of the 6 sampling days, regardless of when missing data occured.

There were 28 (20.3%) subjects who had early missing data, and 38

(27.5%) had late missing data. Further, 64 (46.4%) subjects had fewer

than 4 data points. Despite this degree of missingness, there were no

associations between any of these dummy variables and trajectory

groups or outcomes. Thus, patterns of missing data did not affect

subjects’ biomarker profile or their recovery status. This suggests that

the assumption of data missing at random may not be violated.

Trajectory model development

As mentioned above, we started with a model that had one tra-

jectory group and a quartic polynomial order, and we repeatedly

increased the number of groups in the model. Models with a different

number of groups were compared based on BIC and Bayes factor,

as described above. The results of this process are summarized in

Table 2. Once the number of groups was determined, we refined our

model by adjusting the order of the polynomial for each group. BIC

values for the model with one and two trajectory groups were 943.07

and 844.66, respectively, and the Bayes factor comparing these two

models was > 1000. Thus, the model with two trajectory groups was

considered superior to the model with one group. The BIC value for

the three-group model was - 798.05, with a Bayes factor > 1000

when compared to the two-group model, leading to the conclusion

that the three-group model fits the data better than the two-group

model. We then fitted a four-group model, and the BIC value de-

creased (–801.42) when compared to the three-group model. Thus,

we concluded that a three-group model fit the data better than a four-

group model. The three-group model was then refined until the

highest polynomial’s coefficient for each trajectory group was sig-

nificantly different from zero. The final model had a cubic order for

the ‘‘low’’ group, a second order for the ‘‘intermediate’’ group, and a

slowly decreasing linear ‘‘high’’ group profile (Fig. 1). The BIC

value for this model was - 786.97, and the Bayes factor was > 1000,

when compared to the three-group model with a quartic order

polynomial for each group. Using the maximum probability rule, 25

(18.1%) patients were assigned to the low group, 80 (58.0%) to the

intermediate group, and 33 (23.9%) to the high group. For compar-

ative purposes and to examine the effects of missingness on TRAJ

formation, a subset of subjects having at least 4 data points were used

and TRAJ groups were defined. The results were very similar to the

full model presented in this article (see Fig. 2). Specifically, the best

model was composed of three groups, with the majority of patients

assigned to the intermediate group. The shapes of the trajectories in

this smaller sample were also similar to the trajectories in the whole

sample, with the low group having a rapidly declining profile and the

high group having levels that remained high for the entire sampling

time. Finally, in the smaller sample, being in the high group was

associated with high rates of poor outcome similar to that observed in

the full sample (graphical representation of this data not shown).

We evaluated the fit of the model using fit indices presented in

the model diagnostics section, and results are presented in Table 3.

For all three trajectory groups, the lowest average posterior prob-

ability was 0.92, far greater than the recommended value of 0.7.

This means that the model assigned patients to different trajectory

groups with little ambiguity. Further, the lowest value for the OCC

was 10, which is also greater than the recommendation of 5 as a

general guideline for GBTM.27 Finally, the probability of group

membership (as estimated from the model) and the proportion as-

signed to each group using the maximum probability rule, are al-

most identical for each group.

Outcome prediction

Clinical and demographic associations with trajectory
groups. The bivariate results assessing relationships between

S100b trajectory groups and demographic and clinical variables are

presented in Table 4. Gender distributions were significantly

Table 2. Model Selection Results

Number of groups Polynomial order BIC Bayes factor

1 4 - 943.07
2 4, 4 - 844.66 > 1000
3 4, 4, 4 - 798.05 > 1000
4 4, 4, 4, 4 - 801.42 3/100
3 3, 2, 1 - 786.97 > 1000a

The BIC of the four-group model decreased, compared to the three-
group model, and the groups had overlapping confidence intervals.

aThe last model is compared to the three-group (4, 4, 4) model.
BIC, Bayesian information criterion.

Table 1A. Missing Data Distribution: Number

of Data Points Per Subject

Number of data points Samples available for analysis (%)

2 32 (23.19)
3 32 (23.19)
4 41 (29.71)
5 23 (16.67)
6 10 (7.25)
Total 138 (100)

Table 1B. Missing Data Distribution: Samples

Available by Day

Day of sample
Proportion of samples for
available for analysis (%)

1 51 (37.0)
2 107 (77.5)
3 100 (72.5)
4 108 (78.3)
5 87 (63.0)
6 48 (34.8)
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different between the final three trajectory groups. The low group

was primarily composed of male subjects (92.0%), whereas female

subjects comprised 36.4% of those in the high group. Further, sub-

jects assigned to the high group were, on average, significantly older

than subjects in at least one of the other two groups ( p = 0.004).

S100b trajectory groups were also significantly associated with GOS

and mortality outcomes. For example, a higher proportion of subjects

in the high group died during acute care, compared to subjects in the

low group (39.4 versus 4%). Further, a significantly lower proportion

of subjects in the high group had good outcome 6 months after injury,

compared to subjects in the low group (15.2 versus 47.4%). How-

ever, there was no significant relationship between trajectory groups

and either mechanism or radiological type of injury.

Multivariate logistic regression modeling

Our aim here was to predict global outcome after TBI using

S100B and demographic and clinical variables. Two different lo-

gistic regression models were used: One used clinical and demo-

graphic variables and S100b trajectory groups, and the other used

the same clinical and demographic variables, but used average

S100b levels observed over the first week after injury. For both

models, independent variables that were associated with GOS in

bivariate analysis, based on a p < 0.2 cutoff, were included. A

backward step-wise selection was then used to identify variables

affecting outcome at the confidence level a = 0.05. Average S100b

did not affect outcome, but it was kept in the model for comparison

purposes. The final multivariate results are summarized in Tables 5

and 6. After controlling for demographic and clinical variables, S100b

trajectory groups remained significantly associated with GOS (Table 5).

In fact, for subjects in the intermediate group, the odds of having good

outcome were three times the odds of having good outcome for subjects

in the high group ( p = 0.008). Subjects in the low group had even better

outcome 6 months after their injuries. The odds of having good out-

come for subjects in this group were six times the odds of having good

outcome for subjects in the high group ( p = 0.007). However, average

S100b level was not associated with outcome after controlling for

clinical and demographic variables ( p = 0.229; Table 6).

Discussion

Our results highlight the advantages of group-based analysis for

longitudinal biomarker modeling and outcome prognosis after TBI.

Using this statistical method, we tested for heterogeneity in patterns

of change in S100b levels during the first week after injury and

identified three groups that were qualitatively different, based on

demographic variables as well as outcomes. The low group (18.2%)

comprised patients whose levels rapidly declined during the first

few days. The majority of subjects (56.7%) fell in the intermediate

group, which comprised subjects whose levels steadily decreased

over time. This declining pattern is similar to that noted when

graphing subject S100b levels over the entire population.25 Sub-

jects in the high group (25.1%) represent a somewhat atypical

pattern of change because their levels remained high during the

entire sampling period. In fact, S100b levels for the high group 6

days after injury were comparable, on average, to levels of patients

in the low group right after their injuries. It is interesting that these

three groups had significantly different acute mortality rates and

global outcome 6 months after injury. A significantly higher per-

centage of patients that were assigned to the high and atypical

group died during hospital stay (39.4%), compared to 12.5 and 4%

for the intermediate and low groups, respectively. Further, high

FIG. 1. Trajectory groups for S100b profiles over time with percent membership for each trajectory group. The y-axis represents the natural
log-transformed S100b levels. Three trajectory groups were identified: group 1, low group; group 2, intermediate group; group 3, high group.
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group subjects were less likely to have good outcome 6 months

after injury (15.2%, compared to 47.4% for the low group). Finally,

women were more likely to be placed in the atypical group (42.9%,

compared 19.1% for men) and patients in this group were signifi-

cantly older (42.8 – 2.9 versus 32.3 – 1.6 and 36.3 – 3.0 years for the

intermediate and low groups, respectively), suggesting that age

may influence injury severity and/or play a role-associated BBB

pathology that accompanies injury, thus influencing the evolution

of S100b levels over time. Further discussion of the implications of

this model are discussed elsewhere.25

It is also interesting to note that without controlling for demo-

graphic or clinical variables, higher average S100b levels was asso-

ciated with worse outcome 6 months after injury (4.34 – 0.97 versus

2.04 – 0.44 ng/mL for those who had good recovery). However, there

is no significant effect of average S100b levels in our multivariate

regression model after potential confounders are controlled for in the

model, suggesting that capturing the heterogeneity in biomarker

patterns over time is an important reason for why trajectory groups

were better able to discriminate outcome in this example. Thus, using

average levels would have led to the conclusion that S100b does not

affect outcome after TBI. Our results show that subjects in the in-

termediate group were three times more likely to have better outcome

and those in the low group were six times more likely to have better

outcome, compared to the high group, even after confounders are

taken into account in the multivariate logistic regression model. The

varied pathology that underlies the biomarker profile associated with

each group warrants further study. However, one must carefully

consider the research question in hand and whether an assessment of

longitudinal profiles will appropriately address this question. For

example, the prognostic value of admission-based biomarkers would

not be pertinent to a longitudinal profile approach.

Although not discussed in depth in this article, several longitudinal

statistical methods exist to model data collected over time. Some of

these methods are mixed-effects models,32 hierarchical modeling,33

latent curve analysis,34 and growth-curve modeling technique.35

However, these methods model the overall mean pattern and devia-

tions from the overall mean over time. Because subject-derived bio-

marker assessments may follow different patterns, a group-based

modeling approach allows the flexibility to exploit this feature of

biomarker evolution after TBI and identify qualitatively distinct

subpopulations, rather than estimating the overall biomarker pattern.

It should be noted that these groups provide estimations of

complex distributions, and group membership should not be taken

as an absolute certainty, even in high-fit models. When developing

trajectory models, missing data points should be addressed. In the

current example, only 10 patients had all data points and this is

FIG. 2. Trajectory groups for S100b profiles over time for subjects with 4 or more data points. The y-axis represents the natural log-
transformed S100b levels. Three trajectory groups were identified: group 1, low group; group 2, intermediate group; group 3, high group.

Table 3. Model Adequacy Results

Trajectory group AvePP OCC jp-Pj

Low 0.96 109 0.00
Intermediate 0.93 10 0.01
High 0.92 35 0.01

AvePP, average posterior probability; OCC, odds of correct classifica-
tion; P, actual proportion of subjects assigned to each trajectory group
using the maximum probability rule; p, posterior probability of group
membership.
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considered a limitation. However, replicating these findings in

similar populations, as well as generalizing this modeling approach

to other populations, such as those with mild TBI, blast injury, or

other types of acquired brain injury, will be essential to better

understand the utility of this approach for outcome prognostication

and management across the spectrum of TBI.

Future directions

In our group-based modeling, we used S100b data collected

during the first 6 days after injury. One interesting question is

whether we can effectively predict trajectory groups using fewer

days, using some type of dynamic pattern-recognition approach. In

other words, our goal is to investigate whether biomarker levels

obtained during the first few days after injury can effectively pre-

dict the trajectory groups identified using the full sampling period.

This approach has significant implications with regard to earlier

clinical prognosis and the development of clinical treatment algo-

rithms, for which a rapid assessment of treatment effectiveness

could be generated using a biomarker approach.

In addition, this approach may be useful for future assessments

of multiple biomarker profiles, or profile combinations for both

prognostication and patient management. Also, there may be some

utility for using biomarker-based trajectory groups, in combination

Table 6. Multivariate Logistic Regression Predicting

Outcome Using Clinical/Demographic Variables

and Average First Week After Injury CSF S100b Levels

Independent variable Odds ratio 95% CI p-value

Age 0.62 (0.47, 0.80) <0.001
Injury severity (GCS) 1.39 (1.10, 1.77) 0.006
Subdural hematoma 2.41 (1.11, 5.26) 0.027
Contusion 2.09 (1.00, 4.35) 0.049
S100b average levels 0.95 (0.86, 1.04) 0.229

Average S100b are used instead of trajectory groups.
CI, confidence interval; GCS, Glasgow Coma Scale.
Bolded values represent statistically significant comparisons where alpha

< 0.05.

Table 4. Demographic and Clinical Variables by Trajectory Groups

S100b trajectory groups

Subjects’ characteristics
Low group

(N = 25)
Intermediate group

(N = 80)
High group

(N = 33)
Total sample

(N = 138) Statistics

Gender, N (%)
Female 2 (8.0) 14 (17.5) 12 (36.4) 28 (20.3) X2

257.82, p50.022
Male 23 (92.0) 66 (82.5) 21 (63.6) 110 (79.7)

Age, mean – SEM 36.3 – 3.0 32.3 – 1.6 42.8 – 2.9 35.6 – 1.0 F2,13555.69, p50.004
Age range 16–72 16–74 16–70 16–74
GCS, median 7 6 6 6 X2

2 = 2.9, p = 0.234

Mechanism of injury
Automobile/motorcycle 22 (91.7) 57 (71.3) 19 (57.6) 98 (71.5) X2

4 = 8.74, p = 0.057
Fall/jump 2 (8.3) 13 (16.3) 7 (21.2) 22 (16.1)
Other 0 (0.0) 10 (12.5) 7 (21.2) 17 (12.4)

Radiological injury type, N (%) present
Subdural hematoma 14 (66.7) 47 (59.5) 20 (60.6) 81 (60.9) X2

2 = 0.37, p = 0.833
Subarachnoid hemorrhage 17 (81.0) 55 (69.6) 26 (78.8) 98 (73.7) X2

2 = 1.73, p = 0.421
Diffuse axonal injury 5 (23.8) 31 (39.2) 7 (21.2) 43 (32.3) X2

2 = 4.42, p = 0.110
Epidural hematoma 5 (23.8) 8 (10.1) 4 (12.1) 17 (12.8) X2

2 = 2.44, p = 0.295
Contusion 7 (33.3) 33 (41.8) 18 (54.6) 58 (43.6) X2

2 = 2.62, p = 0.270
Intraventricular hemorrhage 5 (23.8) 26 (32.9) 12 (36.4) 43 (32.3) X2

2 = 0.99, p = 0.610
Intracerebral hemorrhage 10 (47.6) 22 (27.9) 14 (42.4) 46 (34.6) X2

2 = 4.02, p = 0.134

Acute care mortality
Dead 1 (4.0) 10 (12.5) 13 (39.4) 24 (17.4) X2

2515.57, p<0.001
Alive 24 (96.0) 70 (87.5) 20 (60.6) 114 (82.6)

Six-month GOS
Dead 2 (10.5) 11 (16.7) 17 (51.5) 30 (25.4) X2

4517.62, p50.002
Vegetative state/severe disability 8 (42.1) 29 (43.9) 11 (33.3) 48 (40.7)
Moderate disability/good recovery 9 (47.4) 26 (39.4) 5 (15.2) 40 (33.9)

SEM, standard error of the mean; GCS, Glasgow Coma Scale; GOS, Glasgow Outcome Score.
Bolded values represent statistically significant comparisons where alpha < 0.05.

Table 5. Multivariate Logistic Regression Predicting

Outcome Using Clinical/Demographic Variables

and CSF S100b Trajectory Groups

Independent variable Odds ratio 95% CI p-value

Age 0.64 (0.50, 0.83) 0.001
Injury severity (GCS) 1.32 (1.04, 1.70) 0.022
Subdural hematoma 2.99 (1.35, 6.59) 0.007
S100b low Groupa 5.92 (1.64, 21.41) 0.007
S100b intermediate groupa 3.29 (1.36, 8.07) 0.008

aThe high group is the reference category. The low and intermediate
groups are being compared to the high group.

CI, confidence interval; GCS, Glasgow Coma Scale.
Bolded values represent statistically significant comparisons where alpha

< 0.05.
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with genetic and/or epigenetic information, to further characterize

secondary injury and recovery mechanisms as well as to assess

prognosis and/or treatment effects using a gene stratification

approach. Finally, longitudinal physiological data (e.g., ICP mon-

itoring, brain tissue oxygenation, and quantitative electroenceph-

alography techniques) may also be appropriate to explore the utility

of GBTM approaches to further describe physiological correlates of

secondary injury over time and to use alone, and/or in combination,

with biomarker data for prognostication and management purposes.
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